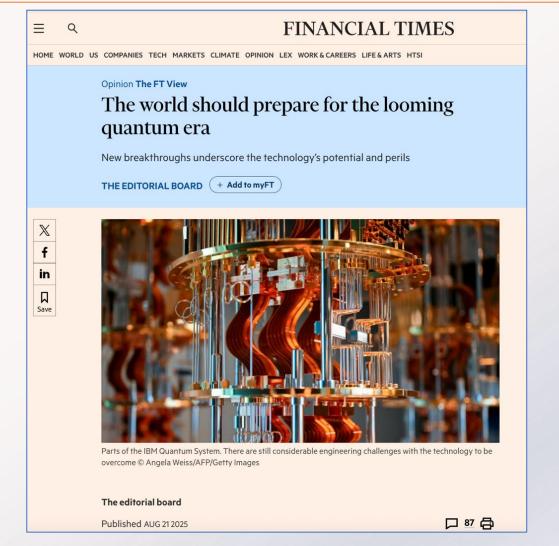
Transformational Change: Building a Collaborative Future



27 & 28 OCTOBER 2025
EUROSTARS TOWER
MADRID, SPAIN

QUANTUM TECHNOLOGIES


Addressing
Sustainability & Security Challenges
and
Wealth Generation/Distribution

The Quantum Apocalypse ...

FT's Looming Quantum Era

FT, August 21, 2025

Tuesday, Oct 28th 2025 [12:00 am - 1:30 am]

Plenary 4

27 & 28 OCTOBER 2025
EUROSTARS TOWER

Quantum Technologies: Addressing Sustainability,

Security Challenges & Wealth Generation & Distribution

Ricardo Enríquez

Head of Quantum

Repsol

Fernando de la Iglesia

VP Product

Quside, Spain

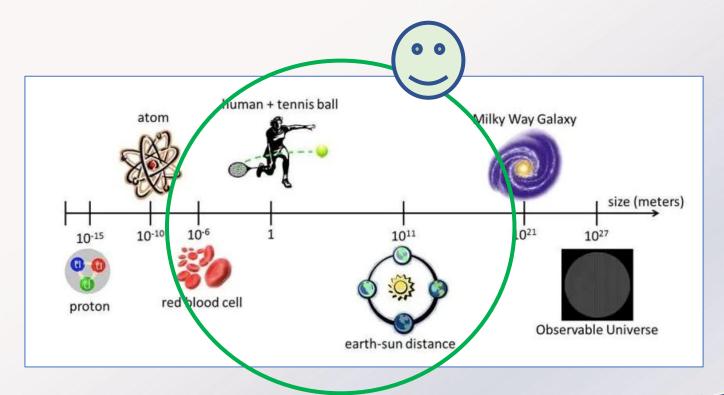
<u>Diego R. Lopez</u>
Senior Technology Expert
Telefónica, Spain

Victor Canivell
Co-founder & Chairman
Qilimanjaro, Spain

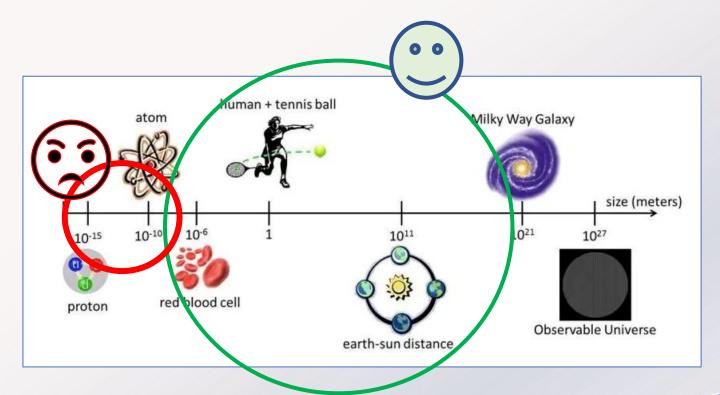
Oscar Diez

Head of Quantum Sector

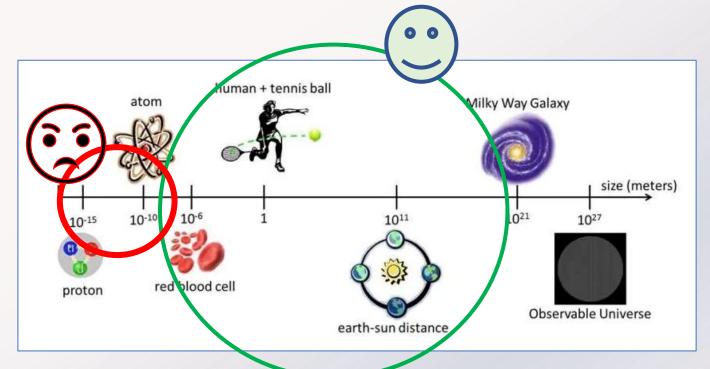
European Commission

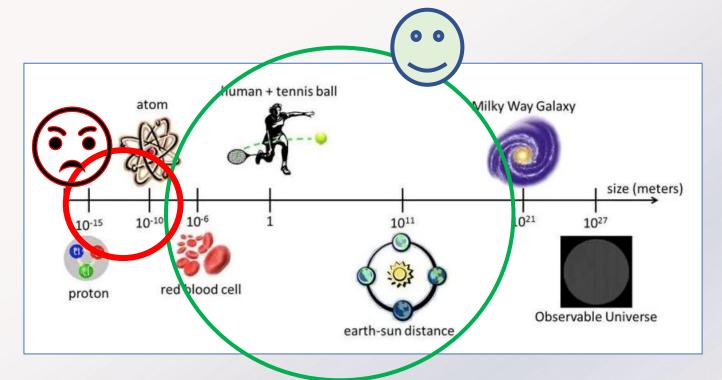


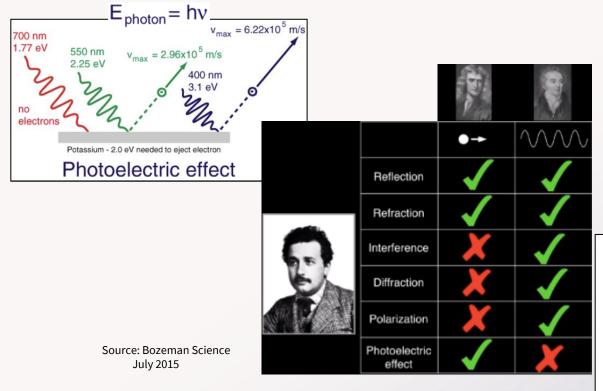
wicente Martín
ector Madrid Quantum Network Professor
sion U. Politécnica Madrid, Spain
globalforumstf.org/global-forum-2025



Ventura Sarasa
Quantum Scientist Associate
BBVA

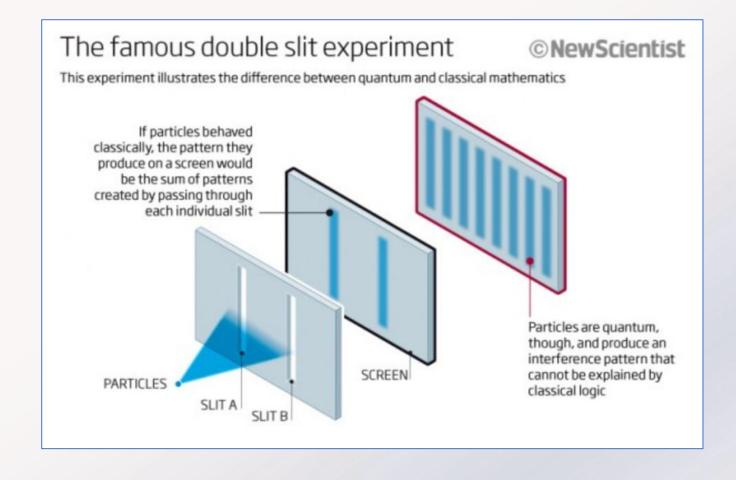






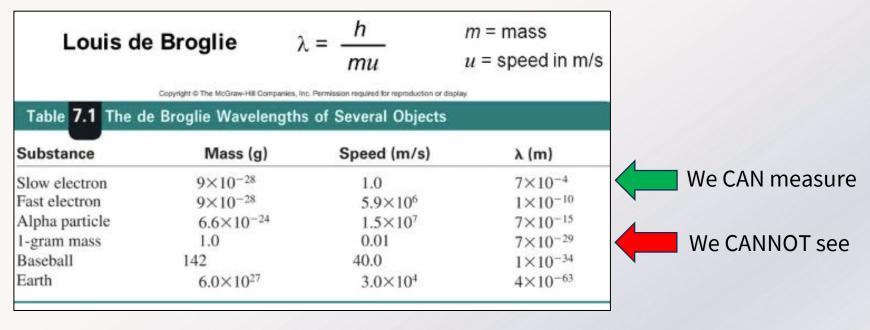
Light is a wave ... & is a particle

Wave Nature of Light


The determining factor for a wave motion is the ability to produce an interference pattern. Given that light can form an interference pattern it must be considered a wave motion.

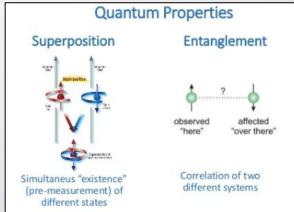
The Particulate Nature of Light

The photoelectric effect - electrons being emitted from the surface of a metal given the incidence of radiation of a sufficiently high frequency - can only be explained in terms of light having a particulate nature.


Matter are particles ... & are waves

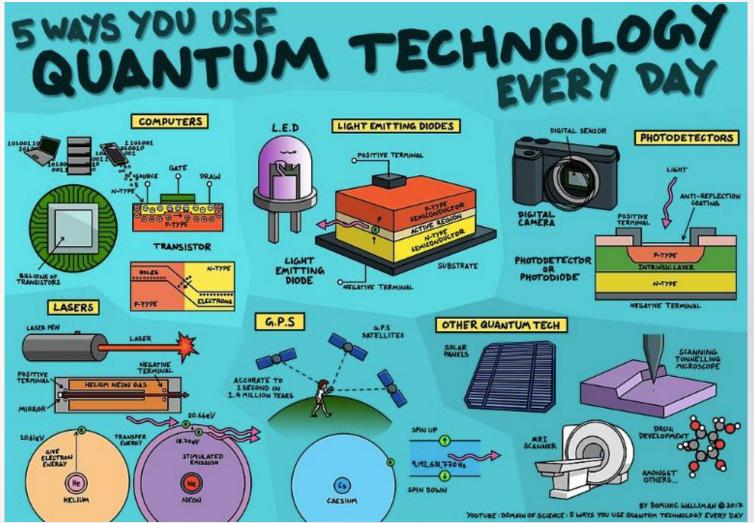
Dual personality: particles & waves*

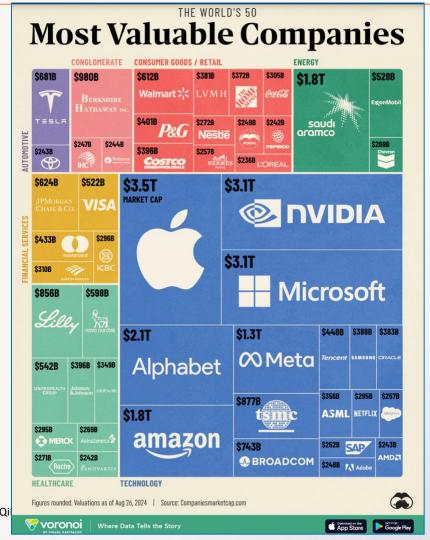
Source: phototerrace.net


^{*} Today's interpretation: probability amplitude waves

Quantum specials underpin the most accurate theory ever

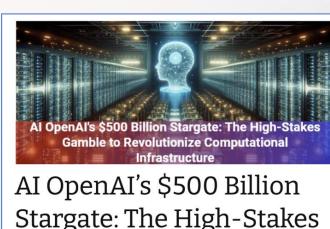
- Wave-particle duality
- Uncertainty principle
- Impact of measurements
- It's all about probabilities
- SUPERPOSITION
- ENTANGLEMENT
- TUNNEL EFFECT




Today's quantum at work: collective quantum behaviours

D.Malliman, 2017

A new industry has become #1



Big Tech invests in Al...

D. Hassabis Google DeepMind & Nobel Prize:

The difference here is, it's going to be 10 times bigger than the Industrial Revolution, and maybe 10 times faster.

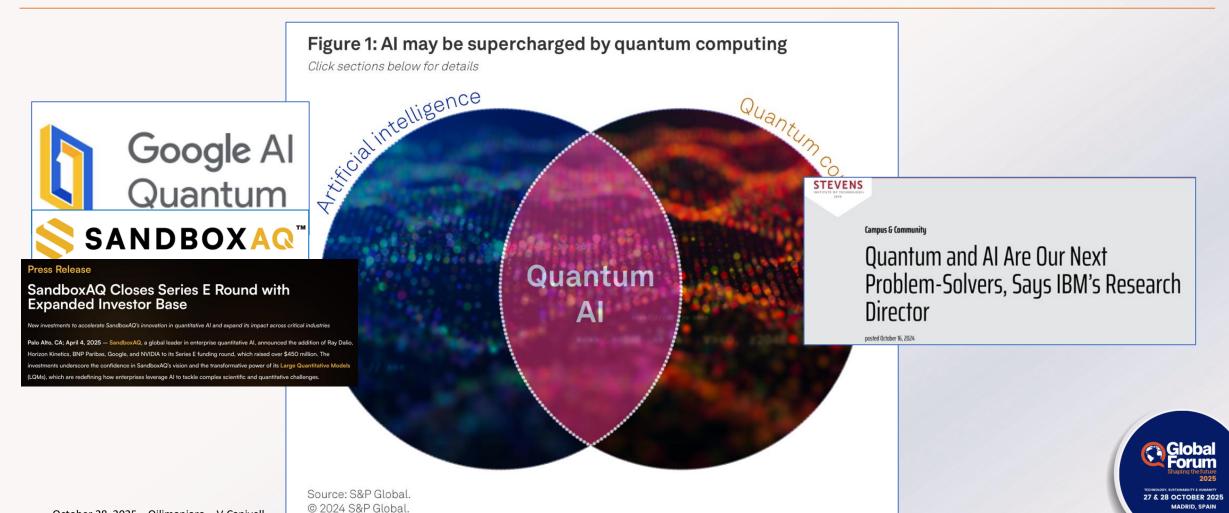
The Industrial Revolution was not plain sailing for everyone, but we wouldn't wish it hadn't happened.
Obviously, we should try to minimise that disruption, but there is going to be change – hopefully for the better.

AI OpenAI's \$500 Billion Stargate: The High-Stakes Gamble to Revolutionize Computational Infrastructure

Big Tech invests in Al... & in Quantum

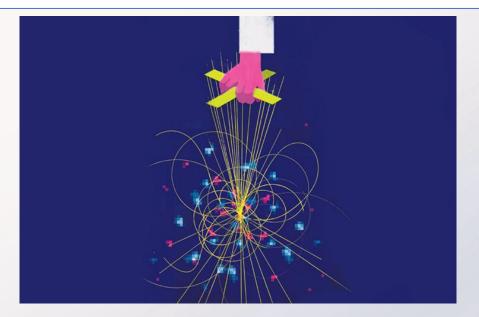
CNBC, June 2025

D. Hassabis, The Guardian, August 2025



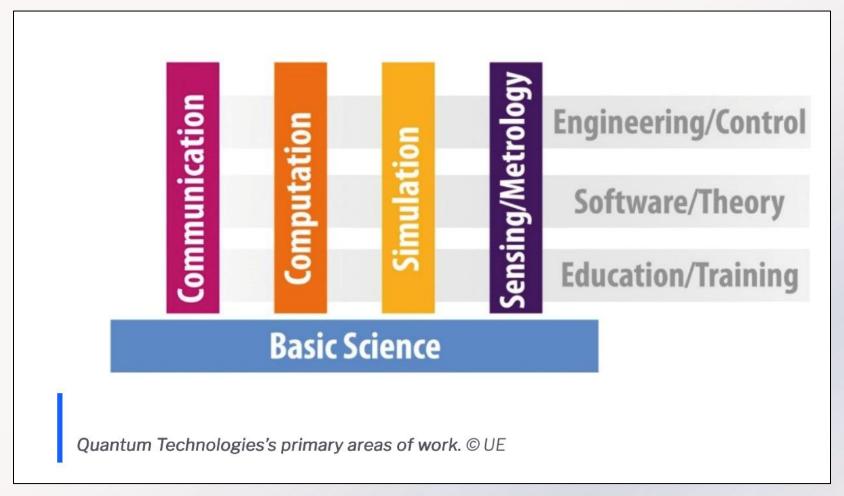
Dealroom, September 11, 2025

The AI & Quantum symbiosis

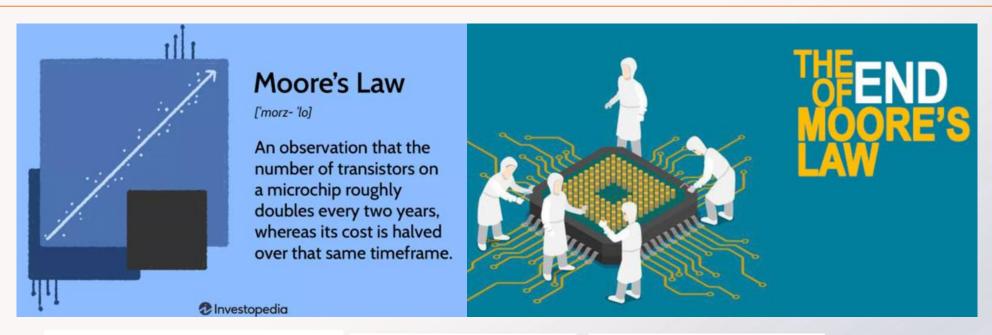

October 28, 2025 – Qilimanjaro – V.Canivell

The next wave: single quantum behaviours

NOBEL 2012 Physics


Manipulating individual quantum systems

Nature **492**, 55 (2012) | Cite this article



The new quantum technologies

The limits of the transistor miniaturisation run < 2 nm!!??

Computing / Quantum computing

We're not prepared for the end of Moore's Law

It has fueled prosperity of the last 50 years. But the end is now in sight.

by David Rotman February 24, 2020

Computing / Microchips

The great chip crisis threatens the promise of Moore's Law

A shortage of microchips threatens to slow the decades of innovation fueled by the promise of ever faster, cheaper computing power.

by Jeremy Hsu

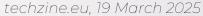
Artificial intelligence / Machine learning

Training a single AI model can emit as much carbon as five cars in their lifetimes

Deep learning has a terrible carbon footprint.

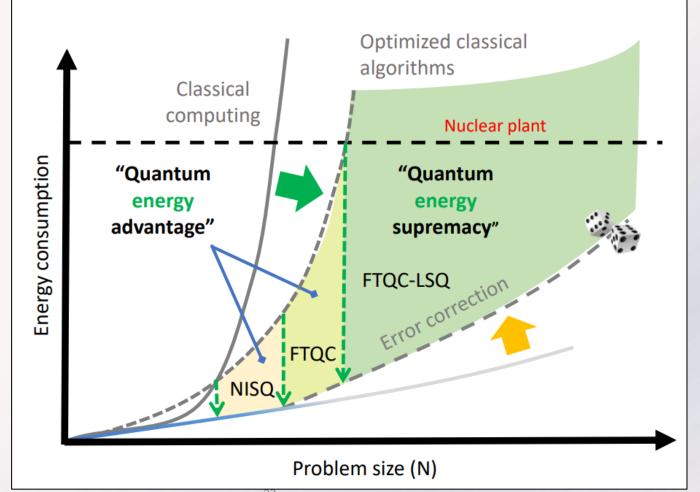
by Karen Hao

June 6, 2019


MIT Technology Review

June 30, 2021

The limits of sustainability: a \$7 Trillion race to scale data centres

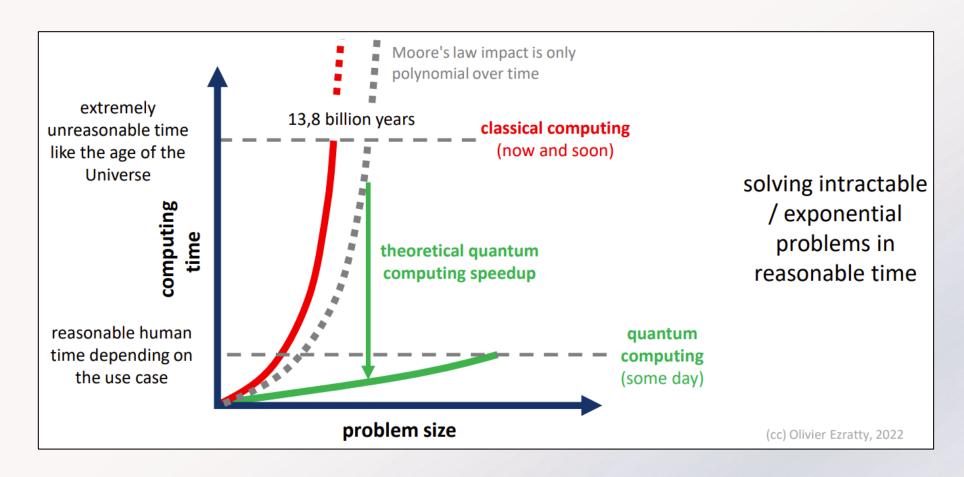


The quantum SUSTAINABILITY promise: exponential

Alexia Auffèves & Olivier Ezratty, 2022


Today's unapproachable calculations #1

Today's unapproachable calculations #2


IEEE Spectrum Quantum Computer Comes Closer to Cracking RSA Enc... 101100101011001010101 `1010110010101011110011010 11010110010110010101 100101100101010001001011 010011010010101101001c 210010101101001001001101 $011010010100110100110^{\circ}$ 010100110100110110100101 001010100101001101001 100101001101001000110100 110101@0101101001011011 010110100101101110100110 10110*0*10100101100101**0**0 101001011001010010011010 0101001101011001010010 10101100101001010101101 *(*01001101011010010101 110101101001010001101Q 0100101\010010101001011 60**1**1010100101101011011)1001011026110111001020 01101010101010011001 101\1010010101101101101011\frac{1}{2} 0110010101010010110101/ 10110\0101011001010101\darkarrel{1} 10101 2010110010102000 00101010010100110100100 20101001101001000110100 1101010010110100101101 M101101001011011110100110

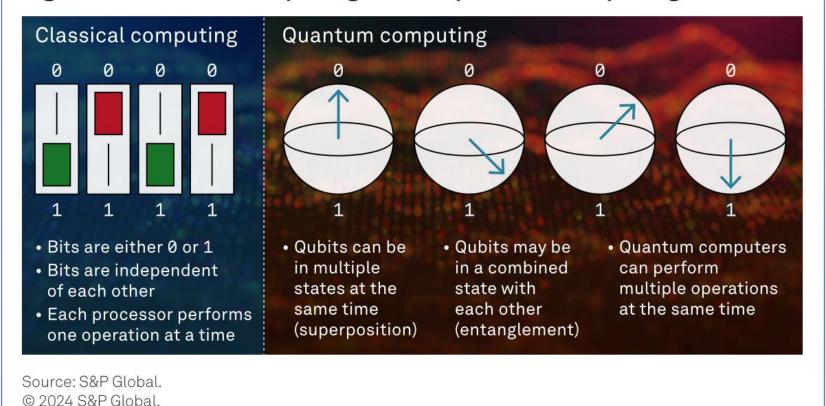
The quantum PERFORMANCE promise: exponential

O.Ezratty, 2022

Quantum: a NEW computing paradigm

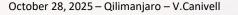
- NEW hardware & NEW software
- Revolutionary orders of magnitude for some calculations
- More compute power & less energy consumption
- Complementary & hybrid = QPU + CPU + GPU
- Futuristic next decade

A very lengthy problem...


... solved in one go

Single quantum states: Qubits

Figure 2: Classical computing versus quantum computing


Quantum vs classical computing

From: An elementary review on basic principles and developments of qubits for quantum computing

Classical Computer Quantum Computer Quantum bit Bit 1010 (Qubit) Basic unit of 1010 information Physical systems Superconducting qubits, ions, neutral atoms, photons, Transistor quantum dots, etc. $10^{-2} \sim 10^{-4}$ $10^{-13} \sim 10^{-18}$ Error rate Source of error Clock jitter, Temperatures fluctuations, background radiations, etc. microwave/laser noise, environmental noise (electromagnetic fields), etc. $0 \stackrel{6}{\Longrightarrow} 000 \stackrel{4}{\longrightarrow} 010 \stackrel{2}{\longrightarrow} 000 \\ 111 \stackrel{1}{\longrightarrow} 111 \stackrel{1}{\longrightarrow} 111$ Error correction Copy & majority vote Physical qubits → Logical qubit

27 & 28 OCTOBER 2025

E.Chae et al., March 2024

Use cases

A quantum computer leverages quantum mechanics, making it very powerful.

Why is quantum computing so powerful?

It leverages the phenomena of quantum mechanics:

- **Superposition**: The possibility of quantum systems to not be in a single defined state (left or right, up or down, etc)
- Entanglement: The possibility of two or more (even physically separate) systems to form an inseparable combined state
- Interference: The potential of quantum states to combine

Which problems can a quantum computer solve?

- Linear algebra (machine learning and AI) for, eg, reduction of large data for better decisions, predictions, and automation
- **Simulation** of quantum systems and processes—eg, molecular processes, material sciences, and life sciences
- Mathematical optimization with algorithms that can enable near real-time optimization for, eg, financial modeling
- Factorization (security) of large numbers with exponential speedup—eg, to break mainstream encryption protocols

What do potential use cases look like?

Automotive

Linear algebra for battery optimization: Efficiently predict the lifetime of batteries

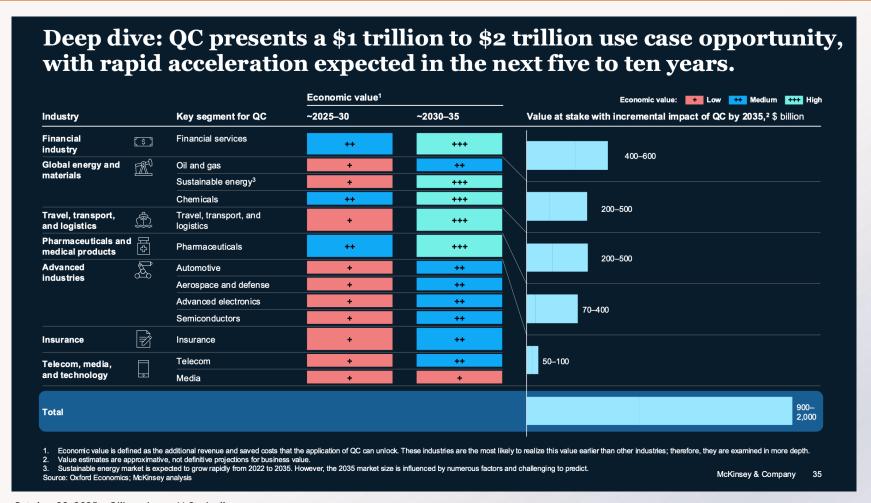
Pharma and chemicals

Simulation of molecules: Simulate molecular processes for drug discovery

Finance

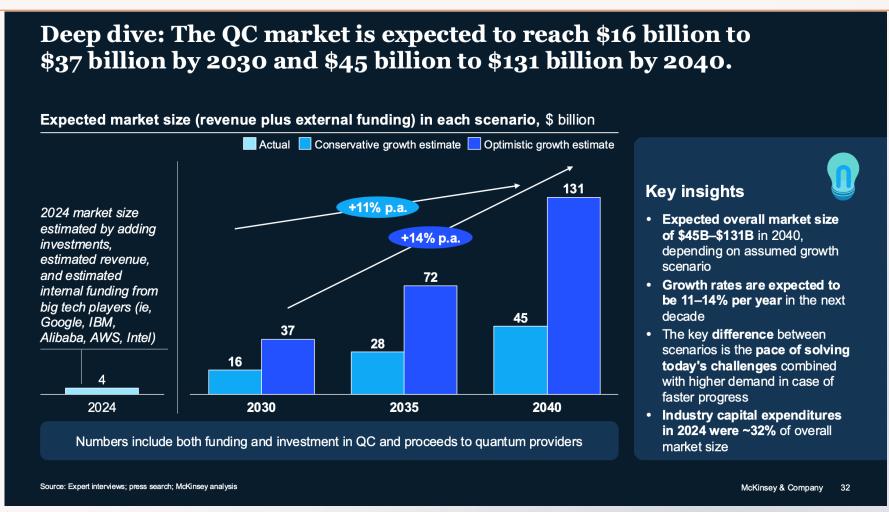
Optimization of collaterals: Consider more collaterals and solve with higher accuracy

Security

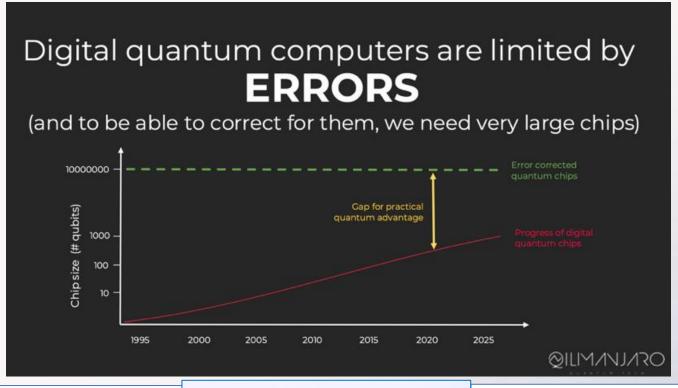

Factorization: Use quantum random number generators to enhance security

McKinsey & Company

McKinsey, 2025


Economic impact: \$1 to \$2 Trillion

McKinsey, June 2025


Market size: \$100 Billion

McKinsey, June 2025

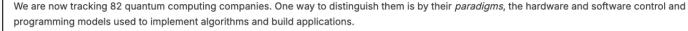
"Noisy Intermediate-Scale Quantum" Today's era

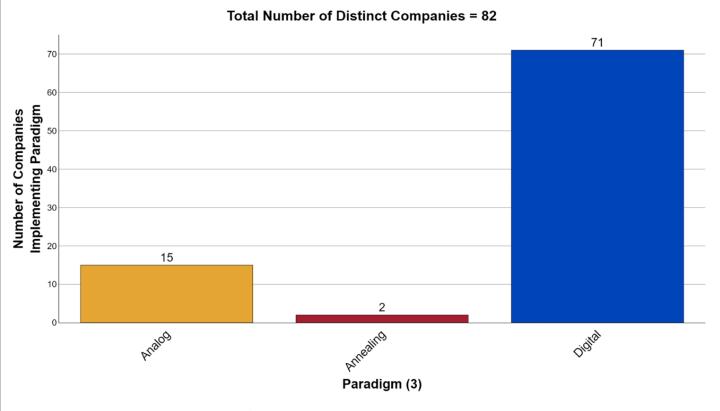
Google Quantum Al-Led Researchers Find 'Sweet Spot' To Use Current Quantum Computers To Make Practical Calculations

Research Matt Swayne • October 9, 2024

News • June 19, 2025 • 4 min read

Microsoft advances quantum error correction with a family of novel four-dimensional codes


How to factor 2048 bit RSA integers with less than a million noisy qubits


Craig Gidney

Google Quantum AI, Santa Barbara, California 93117, USA May 23, 2025

There's another way

Sutor Group, May 2025

Most people who have studied quantum coding are familiar with the digital paradigm. This uses the gate and circuit model explored in most books, including *Dancing with Qubits, Second Edition*. The analog paradigm is more physics-based in its programming approach. By far, the digital paradigm is the most common and the annealing paradigm the least. D-Wave and NEC (to a much smaller extent) work with the annealing paradigm.

Qilimanjaro Quantum Tech

We do full-stack analog QASICs

Unlocking nature through analog quantum computing. Because nature is intrinsically quantum and analog, our custom-designed, analog approach opens the true potential of quantum computing, delivering faster, more accurate and sustainable solutions, tailored to your specific needs for simulation, optimization and Al.

We're building a path towards universal quantum computing through quantum app-specific integrated circuits (QASICs), tackling high-value problems today while laying the groundwork for broader applications in the future.

Qilimanjaro on premise

La Vanguardia, 29.01.2025

Bruselas aprueba construir un tercer computador cuántico en Barcelona

MareNostrum-Ona costará 8,5 millones de euros y se instalará en el BSC

FRANCESC BRACERO

La Comisión Europea anunció ayer mediante su agencia para la computación de altas prestaciones, EuroHPC JU, un acuerdo para instalar en el Barcelona Supercomputing Center (BSC) un tercer ordenador cuántico llamado MareNostrum-Ona, construido por la compañía Qilimanjaro Quantum Tech en asociación con Do it Now. Bruselas financiará el 50% del coste de su instalación, de 8.5 millones de euros. La otra mitad la aportará el consorcio EuroQCS-España, dirigido por el BSC, que incluve el Instituto de Física de Altas Energías (IFAE) de España y el Laboratorio Ibérico Internacional de Nanotecnología (INL) de Portugal.

MareNostrum-Ona será un ordenador cuántico analógico. En su primera generación, este sistema tendrá al menos 10 qubits físicos que se irán ampliando en la tercera generación, según el comunicado de EuroHPC sobre el acuerdo para la instalación en la capilla de la torre Girona del BSC. El ordenador cuántico desarrollado por Qilimanjaro utiliza tecnología de qubit superconductor siguiendo el modelo de computación adiabática (sin pérdida ni ganancia de calor)/analógica.

La nueva máquina es del tipo quantum annealer (que se podría traducir como horno cuántico), un tipo de ordenador cuántico que se usa para encontrar la solución de mínima energía de un problema de optimización, que suele ser la solución más eficiente. Mientras que en

En este espacio de la torre Girona donde ya hay dos ordenadores cuánticos se instalará un tercero

EuroHPC indica que "permitirá el desarrollo de aplicaciones de gran relevancia industrial, científica v social"

computación clásica se miran todos los caminos para encontrar el más rápido, en el auantum annealer se puede hallar esa vía mediante una forma más rápida y eficiente porque es co-

À diferencia de los computadores clásicos, donde la unidad de información básica, el bit, se basa en 1 v 0, con un solo estado cada vez, en la computación cuántica se utilizan qubits, que pueden tener dos estados de forma simultánea, lo que permite nuevas puertas lógicas y algoritmos de mayor complejidad para resolver problemas que en son prácticamente inaborda-

una amplia gama de usuarios europeos, desde la comunidad científica hasta la industria v el sector público". La nota asegura que la nueva instalación "permitirá el desarrollo de aplicaciones de gran relevancia industrial, científica y social en toda Europa, añadiendo nuevas capacidades al panorama de la supercomputación europea".

El nombre de MareNostrumlos ordenadores tradicionales Ona es una referencia a la función de onda que representa el estado cuántico y, además de EuroHPC anunció que Mare- nombre de mujer, alude al mar mo si se pudieran ver todas de Nostrum-Ona "será accesible a como MareNostrum, el nombre ras híbridas clásico-cuánticas.

del supercomputador en el que se integrará y que ya va por su quinta generación. La nueva máquina complementará el doble ordenar cuántico digital va instalado en el BSC, que fue adquirido en el marco de la iniciativa Quantum Spain.

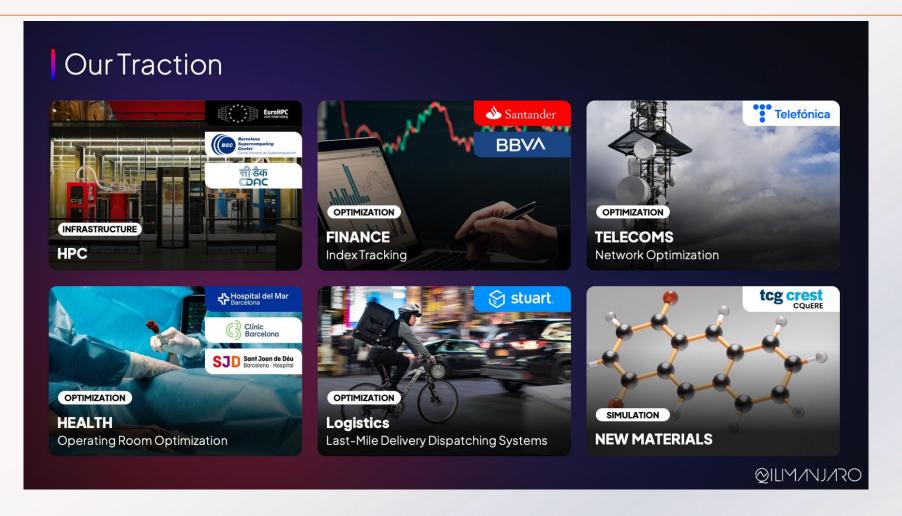
Oilimaniaro acaba de instalar estos dos computadores cuánticos en la capilla de la torre Girona del BSC. Las nuevas máquinas son un sistema superconductor inicialmente equipado con un chip de cinco qubits fabricado por QuantWare, pero está previsto que se le instale más adelante un chip de 35 qubits que lo situará entre los sistemas cuánticos más avanzados de Europa, según la compañía, que es un spin-off (una separa-

Qilimanjaro Quantum Tech instalará la nueva máquina, que en una primera fase dispondrá de 10 aubits

ción) surgida del propio BSC en el 2019. Un ordenador cuántico analógico resulta útil para simular procesos cuánticos de la naturaleza, como el comportamiento de moléculas químicas para fabricar nuevos fármacos. Los computadores cuánticos analógicos y digitales abordan las tareas de forma diferente.

Por ejemplo, para llevar una pelota de un punto A a un punto B, el digital guía la pelota a base de empuie. En cambio, el analógico, en lugar de empujar la pelota, es como si construyera un tobogán para que se deslice sola hasta el punto B.

Desde el 2023, EuroHPC ha ordenado adquirir ocho computadores cuánticos en República Checa, Alemania, España, Francia, Italia, Polonia, Luxemburgo v los Países Bajos, El objetivo es tener la mayor variedad posible de plataformas de computación cuántica y arquitectu-



Qilimanjaro cloud Quantum-as-a-Service

Qilimanjaro algorithms co-design

Recognitions from EC, Intel, MWC

intel ignite

Intel® for Deep Tech Startups

Intel® Ignite Selects Startups for Spring '23 Cohorts

Spanish quantum computing startup Qilimanjaro Quantum Tech wins 4YFN competition at Mobile World Congress

Sergio Ramos - March 1, 2024

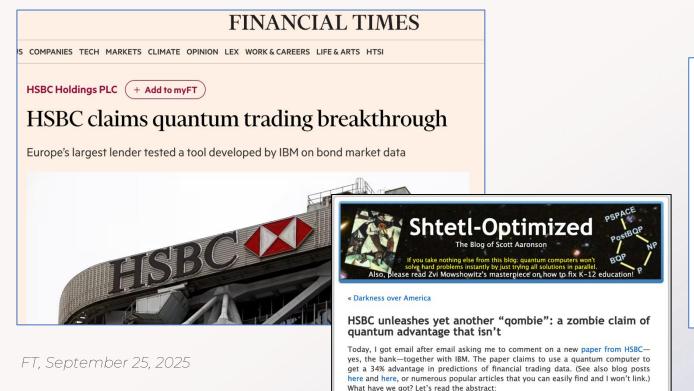
Category winner 'NextGen Tech'

Qilimanjaro secured the NextGen Tech award for its full-stack Quantum Application Specific Solutions (QASICs),

INNOVATION RADAR

PRIZE

delivering quantubenefits today. The company's cuttine approach acceled quantum innovations (QASICS) and the company's cuttine approach acceled quantum innovations (QASICS) and the company's cuttine approach acceled applications (QASICS) and the company's cuttine approach acceled to the cuttine approach acceled to the cuttine acceled to


Quantum computing expectations

TRUE QUANTUM COMPUTING IS A REALLY DISRUPTIVE TECHNOLOGY

CURRENT ADVANTAGES ARE LIMITED
SINCE
TODAY'S SYSTEMS ARE
FIRST GENERATION

NISQ era "limited" value-add: quantum-classical & quantum-inspired

Multiverse Computing Compresses Llama 3.1-8B and Llama 3.3-70B By 80% With Almost No Precision Loss

Advanced LLM compressor CompactifAI delivers smaller versions of the most popular open-source AI models available as a service

April 08, 2025 09:00 ET | Source: Multiverse Computing

27 & 28 OCTOBER 2025

S.Aaranson blog, September 25, 2025

Transformational Change: Building a Collaborative Future

27 & 28 OCTOBER 2025
EUROSTARS TOWER
MADRID, SPAIN

BBVA

Ventura Sarasa

Who are we?

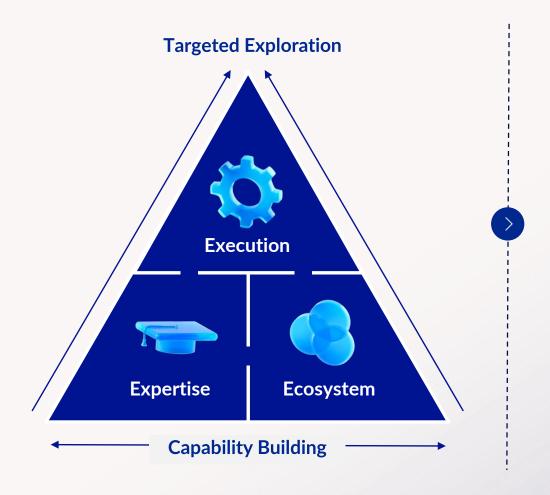
A team of mathematicians and physicists, with PhDs, decades of experience in both academia and industry, having worked in finance, data science, and cybersecurity.

Escolástico Sánchez

Mathematician with 3 Master's degrees
25+ years in industry

Senaida Hernández
PhD in Physics
4 years in industry | 10 years in research

Pablo Serrano
Physicist, Master's n Data Science & Quantum Computing
6 years in industry



Ventura Sarasa
Mathematician, Master's in Cybersecurity & Quantum Computing
3 years in industry | 1 year in research

Our ambition is to be an early adopter, for which we have set a strategy based on 3 pillars

Pillar

Cultivate inhouse **Expertise**

Orchestrate an internal & external **Ecosystem**

Drive a use-case **Execution** Plan

Approach

Build a specialised internal team capable of identifying and translating business challenges into quantum-computable problems and evaluating external technologies readiness

Form a curated network of trusted partners (business, peers, quantum vendors, startups, academic institutions and public sector) to accelerate learning, de-risk investment, and gain access to cutting-edge technology

Pinpoint and prioritise high-value business problems that are computational bottlenecks and run proofs-of-concept with a phased approach and a clear focus on practical implementation

Quantum Advantage

Problem types:

Machine Learning:

Quantum machine learning methods will allow learning more complex patterns and provide more accurate predictions.

Simulation

Quantum algorithms will be able to obtain the solution faster than the most advanced Monte Carlo methods.

Optimization

Quantum computing will be able to find better solutions more efficiently than conventional algorithms.

Available technologies:

Gate-Based Quantum Computing:

Gate-based quantum computing operates using quantum logic gates that modify the states of the qubits. These types of computers are universal, being the quantum analog to classical computers.

Quantum Annealing:

Quantum annealers are a type of quantum hardware designed to solve optimization problems.

Quantum-Inspired Methods:

Collection of classical algorithms originally designed to study quantum phenomena, but which have proven to be applicable in other areas.

Quantum Threat

Asset Inventory

PQC Adoption

Build an inventory of cryptographic assets to have a clear understanding of where cryptography is being used, as well as its level of exposure to the Quantum Threat.

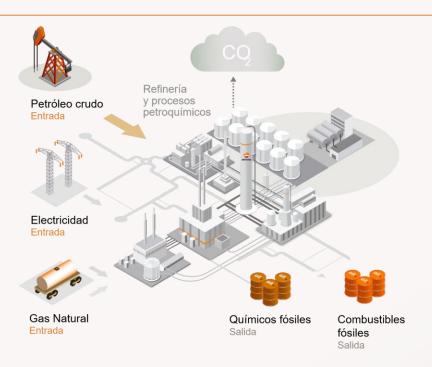
Leverage external tools for asset discovery and ensure adequate completeness of the inventory. Adopt crypto-agility as a new paradigm to increase BBVA's response capacity in case any of our crypto assets are compromised.

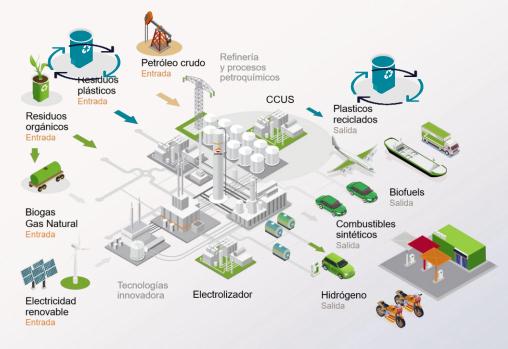
Adjust internal systems to comply with crypto-agility principles.

Plan the adoption of Post-Quantum Cryptography (PQC). Assess the impact related to the replacement of current algorithms in both internal and third-party systems.

Define an adoption roadmap based on a proper risk assessment. Search for new forms of quantum securitization, researching technologies such as Quantum Key Distribution (QKD) and Quantum Random Number Generators (QRNG) to provide pure entropy for the bank's cryptographic services.

Transformational Change: Building a Collaborative Future


27 & 28 OCTOBER 2025
EUROSTARS TOWER
MADRID, SPAIN


Repsol Ricardo Enríquez

A Quantum revolution in energy

NOW

From actual refineries and petrochemical processes...

...To low-carbon petrochemical plants and refineries

Repsol ha orientado su estrategia para alcanzar cero emisiones netas en 2050

Repsol Compromiso Cero Emisiones Netas 2050

Quantum and energetic sustainability

PROYECTO CUCO

COMPUTACIÓN CUÁNTICA EN INDUSTRIAS ESTRATÉGICAS

Transformational Change:

Building a Collaborative Future

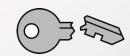
TECHNOLOGY, SUSTAINABILITY & HUMANITY

27 & 28 OCTOBER 2025 EUROSTARS TOWER MADRID, SPAIN

Universidad Politécnica de Madrid Vicente Martín

The bad news? We have to Move

Faster than QC!


QC kills the current public key crypto. Moving to quantum-safe.

- Estimated probability +60% in 15 years, +80% in 20.
- Transmitting encrypted data today with a lifetime > 15 years today, is not secure.

Today

Waiting is not an option

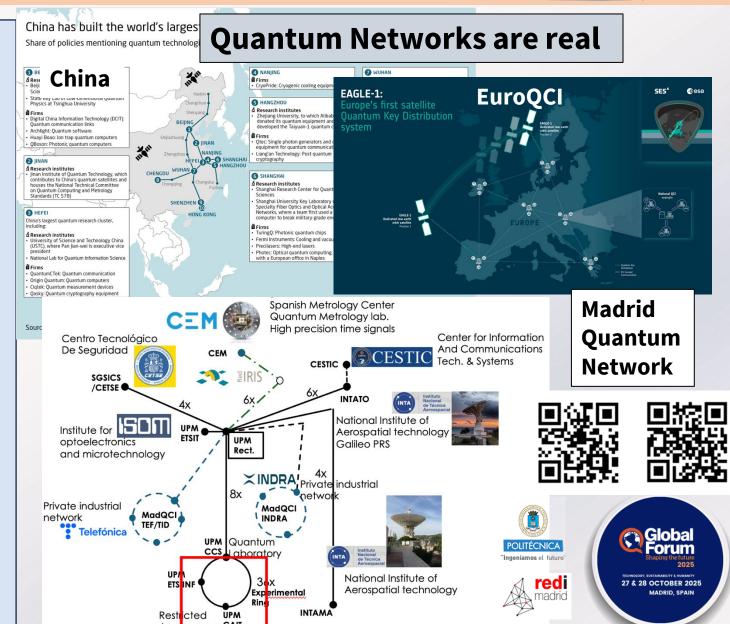
Know your risk: inventory

Quick response: Cryptoagility

Avoid catastrophe: Safety net

Courtesy: KEEQUANT

Quantum Networks: lending a hand



UNIVERSIDAD POLITÉCNICA DE MADRID

- Communicate Quantum computers:
 - Distributed Quantum computing: exponential memory scaling.
- Quantum Sensing
 - Ultraprecise time distribution
- Quantum Cryptography
 - Quantum Key Distribution

QKD: Symmetric key distribution **without Computational assumptions!**

- Long term security
- Just **symmetric**: Not a substitute
- Requires qubit transmission: physical devices

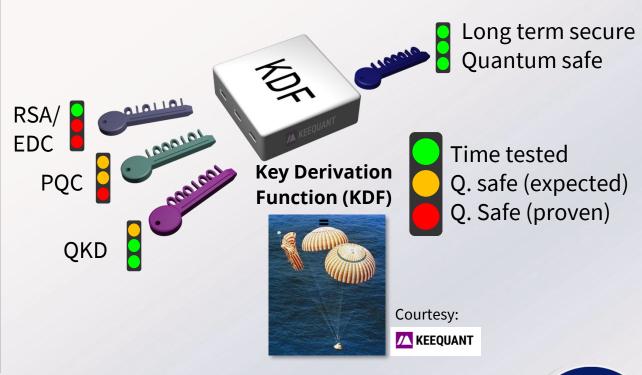
Seizing the opportunity: A Resilient Security Infrastructure for the Future

Use the full cryptographic toolkit:

1010 1010

PQC standards

QKD: Quantum Cryptography



Pre-shared keys

Symmetric Key Infrastructure

We can start now: hybridization

For **Defense in depth** and a **long term security infrastructure** that can **evolve, but not break**.

Seizing the opportunity: A Resilient

Use the full cr

PQC stan

QKD: Qua

Pre-sha

Symmetr

zation

Long term secure
Quantum safe

ime tested

- . safe (expected)
-). Safe (proven)

For **Defe**

Plus large companies are also including it In their portfolio.

NT

Good entropy

Transformational Change: Building a Collaborative Future

27 & 28 OCTOBER 2025
EUROSTARS TOWER
MADRID, SPAIN

Quside

Fernando de la Iglesia

Vision

Everyone, everywhere, should have access to the strongest foundation of digital trust

Cryptography

Entropy / Randomness

Vision

Everyone, everywhere, should have access to the strongest foundation of digital trust

Quantum technologies provide true randomness by nature that we can measure

Cryptography

Entropy / Randomness

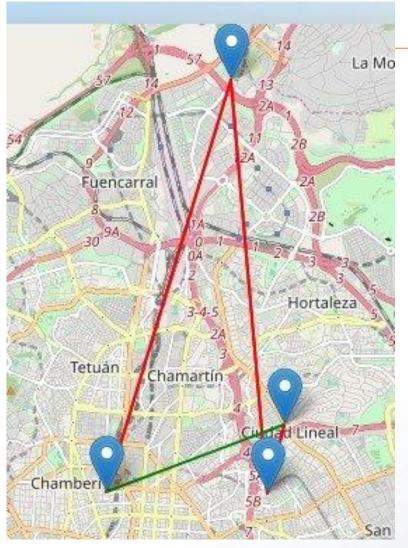


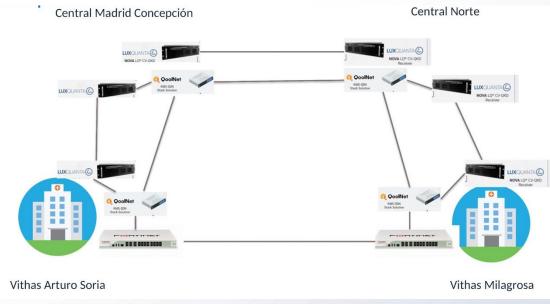
Vision

Efficiency and performance to help solving the global challenges.

Stochastic computing.

Transformational Change: Building a Collaborative Future




27 & 28 OCTOBER 2025
EUROSTARS TOWER
MADRID, SPAIN

Telefónica Diego López

Building Today's Quantum Communications

- Protect information shared between hospitals
- Enable collaborative clinical sessions
- Production environment
 - Two Vithas hospitals: Arturo Soria and Milagrosa
 - Two Telefónica PoPs: Norte and Concepción
 - Commercial fiber deployment

Thinking of Tomorrow's Quantum Communications

- An exclusively Quantum Internet is neither feasible nor desirable
 - Cost and accessibility
 - Reliability and robustness
 - Speed and efficiency
- The three goals to achieve a Quantum-Enabled Internet
 - Universality, accommodating any application
 - Transparency, sharing physical media with classical networks
 - **Scalability**, so protocols can support the growth of the network
- Via three essential architectural properties

Agility: avoid a tight coupling with specific (physical) technologies

Sustainability: open availability in technological and economical terms

Transformational Change: Building a Collaborative Future

27 & 28 OCTOBER 2025
EUROSTARS TOWER
MADRID, SPAIN

Quantum Europe Oscar Diez CNFCT C2

Outlook: Global Public Funding

CANADA €1.2 bn

UNITED STATES

€4.5bn

UK €3.5bn

europe over €10bn

on European level and through national programmes

European Union (EU):

•Germany: €4.9B

•France: €2.0B

•Netherlands: €965M

•Spain: €60M •Finland: €24M

•Austria: €115M

Hungary: HUF 3.5B (~€11M)
 Denmark: DKK 2.7B (~€406M)

•Sweden: SEK 1.6B (~€160M)

•European Commission: €2.0B

JAPAN €1.7bn

CHINA

€8-15bn

range estimates based on various sources

Region/Country	Public investment	Private nivestinent	Key Players
European Union	MS +6bn + €2B Quantum Flagship (HE)	Lower compared to global counterparts	Universities, startups, MS and EU-led, IQM, Pasqal, AQT, Blueforce,
United States	National Quantum Initiative	Strong from bit tech players such as Google, IBM, Microsoft	Google, IBM, Microsoft, Rigetti, Qera, Quantinium,
China	Large state-backed investment in quantum infrastructure	Growing, government-driven	Government-led, Alibaba, Huawei
Canada	Gov-private partnerships on quantum computing research	Strong collaboration with D-Wave, Xanadu	D-Wave, Xanadu,
Japan	Significant gov investment (Moonshot, Quantum Strategic Program)	Growing with Toshiba, NTT, Fujitsu	Toshiba, NTT, Fujitsu, Q*Quantum
UK	Major public funding through UK National Quantum Technologies Programme	Moderate, focused on startups and collaborations	OQC, ORCA, Riverlane, Universal Quantum
Australia	State investment in quantum computing and communications	Collaboration with companies like Silicon Quantum Computing	Silicon Quantum Computing, Quantum Brilliance, Diraq

AUSTRALIA

€580N

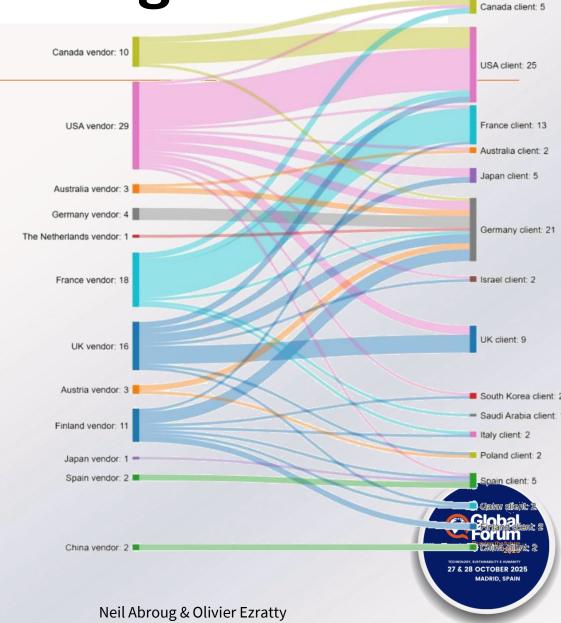
Why a Quantum Strategy?

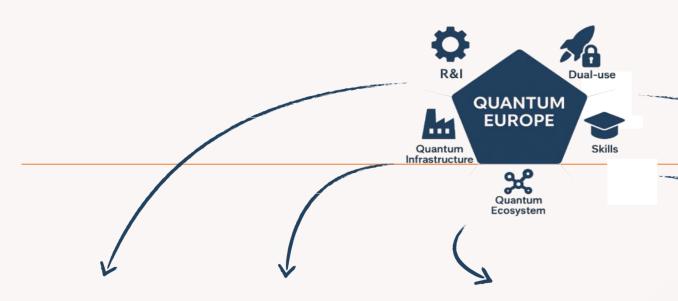
Global race is heating up → Europe risks losing the lead

- Fragile ecosystem: startups lack scale-up capital & anchor customers private investment issues, 120 startups
- Fragmentation: scattered EU / Member-State programmes dilute impact EU programs + 27

Acting now secures tech sovereignty, jobs & security benefits

Why a Quantum Strategy





The Fragmentation Challenge

- 100+ deployable quantum computers globally by 2025
- Europe hosts the largest QPU zone (~40 systems)—but distributed across 20+ vendors
- Lack of consolidation limits scalability and market leadership
- U.S. shows self-sufficiency (IBM, IonQ); Canada and Finland are strong exporters
- Germany remains a key user but depends on imported hardware
- "The question is not whether Europe can lead. It's whether it can organize to lead at scale." – Neil Abroug, Head of Quantum at INRIA

Global **Forum**

27 & 28 OCTOBER 2025

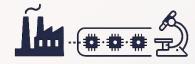
FROM LAB TO MARKET

EUROPE R&I

SCALING QUANTUM CAPABILITIES

Quantum sensors gravimeters, inertial navigation

Interoperability & hybrid systems



EuroQCI secure quantum communication

Pilot lines for production and testing

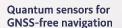
GROWING EUROPE'S QUANTUM ECONOMY

6 industrial pilot lines

EU Design Facility + cloud-based tools

stimulate demand **QU-TEST: EU-wide**

Public procurement to



certification + benchmarking

IP strategy + resilience for EU supply chain

STRATEGIC AUTONOMY IN SPACE, SECURITY & DEFENCE

Roadmaps: PQC, dual-use applications, **ESA** cooperation

Quantum in EU defence and NATO strategy

Quantum in EU defence and NATO strategy

CIVIL

DEFENCE

A QUANTUM WORKFORCE FOR THE FUTURE

Talent portal + 'Teach the Teacher' modules

Robust IP strategy

Strategic Pillars of the EU Quantum Ecosystems

Flagship

Bring quantum technologies from the lab to the market and consolidate European scientific leadership in quantum research

Fundamental R&D

Technology Supply

Advanced Digital Skills

Develop short term training courses and Master's programmes in key capacity areas

2021-2027

DIGITAL EUROPE

European Chips Act

Bolster Europe's competitiveness & resilience in semiconductors & quantum chips including production facilities & Quantum Fund

From Lab to Market

Pilot Lines & Testing Facilities

Q Sensing Deployment

Build and deploy Quantum sensing devices **Quantum Gravimeters**

Quantum MRIs

Build and deploy in the next decade a certified secure pan-European end-to-end QCI for cybersecurity services

OKD Infrastructure

EuroHPC-QCS

Build and deploy an infrastructure for high performance computing and quantum computing

HPC with Accelerators

Stand-alone Q Computers

EuroQCI quantum communications

Integrated satellite and terrestrial system spanning the whole FU for ultra-secure exchange of cryptographic keys

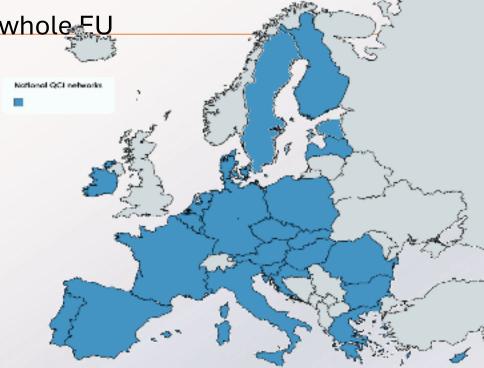
- Part of the EU Secure Connectivity Programme (IRIS²)


→ **Deployments**

- *Terrestrial segment
- → DIGITAL: 6 industrial & 26 national projects, CSA
- → Ongoing: procurement for QKD testing & evaluation
- → 2024+: CEF call for cross-border connections / OGS

*Space segment

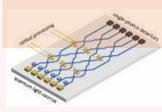
- → Eagle-1
- → SAGA



Telecommunication
Newtork

FIBRE
INFRASTRUCTURE

SECURITY
SERVICES FOR
CLIENTS


Quantum Computing and simulation Infrastructure

Quantum Diversity in Technology

EuroQCS-France [GENCI]

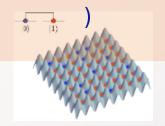
Photonic Qubits (digital)



Euro-O-Exa (Germany) [LRZ]

IQM

Superconductin g Qubits (digital)



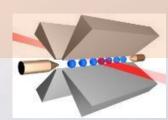
SuperMUC-NG

Neutral atom Qubits (analogue/digital

Leonardo

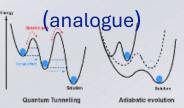
IQM

Superconducting Qubits with a starshaped topology (digital)



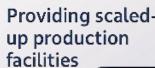
Karolina

Trapped ion Qubits (digital)



Altair

Superconductin g Flux Qubits -Annealer Mode


Quantum Stability Pilot lines

Growing Europe's Quantum Economy

Quantum Tech	Technical Focus	Strategic Objective
Superconducting	Integrated microwave control, scalable fabrication, coherence preservation	Industrial-scale yield of superconducting QPUs
≤ Photonic	Quantum Photonic Integrated Circuits (QPICs), monolithic integration, photon sources	Enable photonic QPUs & QComm chips with CMOS-compatible fabrication
Semiconducting	Silicon spin qubits, CMOS- compatible fabrication, 2D/3D stacking	Transfer spin-based QPUs from labs to fabs, scalable readout & packaging
Diamond-based	NV and SiV centers in diamond, sensing and computing integration	Advance EU self-sufficiency in quantum sensors and QPUs based on diamond
Neutral Atoms	Atom arrays, optical tweezers, laser beam integration	Create pilot-level capability for neutral-atom-based digital/analog QPUs
Trapped Ions European Commission	Micro-fabricated ion traps, vacuum packaging, integrated laser systems	Establish EU trapped-ion foundry with sustainable chip-level production

Supporting the development of quantum chip technology

Enhancing availability

for computing, Open to European communication and sensing

0

stakeholders, especially start-ups and SMEs

Boosting innovation capacity for Europe

Quantum Grand Challenge

Scaling Europe's Quantum Startups

- 2-phase programme to support EU-based quantum computing startups
- Phase 1:
 - Up to 12 grants funded with €200k-300k grants (4-month projects)
 - Deliver technical & financial roadmaps + working prototypes → Benefit from EIB Advisory to prepare bankability Phase 2
- Phase 2:
 - Up to 6-7 top performers receive up to €30M InvestEU investment
 - Build scalable quantum platforms validated in real-world settings
- Focus on integrated hardware–software systems and market-ready use cases
- Backed by InvestEU, EIB, and supported with the Sovereignty Seal
- Key goal: Create bankable, competitive quantum computing platforms in Europe

QUANTUM GRAND CHALLENGE

Scaling Europe's Quantum Startups

PHASE 1

- Up to 15 grants of € 400,000 each
- 6-month projects to deliver roadmaps and prototypes

PHASE 2

- 6-7 startups selected to receive up to €30 million each
- Develop scalable quantum platforms and demonstrate industry use cases

Focus on integrated hardware—software systems

Support from InvestEU and EIB

Backed by the Sovereignity

Quantum Skills Digital Academy EU Call for Proposals (DIGITAL-2025-SKILLS-08)

Establish a central EU-level academy to deliver specialised training in quantum technologies, targeting various education levels and professional profiles.

Scope of Activities:

- Master's/Doctoral programmes (ISCED 7 & 8)
- Self-standing training modules for professionals
- Hands-on quantum lab experiences, internships, summer schools
- Teacher training (Teach-the-Teacher), including visits to quantum labs
- Outreach to underrepresented groups, including women and less-developed regions

Ecosystem Building:

- Strong partnerships with academia, industry, and research centres
- Promotion of industry-linked education and quantum career paths
- Integration with EU initiatives like the Quantum Flagship and Deep Tech Talent Initiative
 Measuring Impact:
- KPIs include number of trained individuals, industry uptake, satisfaction, and inclusivity
- Progress monitoring aligned with the Digital Decade & EU Skills Framework

Funding:

- Lump Sum Grant with a 50% funding rate
- Includes support for infrastructure, mobility, and third-party training initiatives


Launch Date:

2025, under the Digital Europe Programme

More Info: Visit Digital Skills & Jobs Platform https://digital-skills-jobs.europa.eu/en

Open: 15 April 2025 Submission deadline 2 October 2025 (17:00 CET)

QUANTUM SKILLS DIGITAL ACADEMY

Advanced training programmes

Industry collaboration



Teaching initiatives

Inclusive outreach

The Quantum Act

From Strategy to Action

Provides the legal and financial backbone for implementing the Quantum Europe Strategy

- Establishes a legislative basis for sustained multi-annual EU and MS investment
- Empowers programme continuity beyond political cycles

Defines governance, IP, and infrastructure access frameworks

- Clarifies roles for the European Commission, EuroHPC, Chips JU, and Member States
- Supports sovereign, standards-compliant EU infrastructure (compute, sensing, comms)
- Protects European-developed intellectual property from strategic leakage

Aligns EU, Member States, and industry under a shared operational vision

- Facilitates vertical coordination from research to deployment
- Streamlines regulatory and procurement procedures across actors

Enables coordination, monitoring, and life-cycle support mechanisms

- Introduces Key Performance Indicators (KPIs), progress benchmarking, and oversight
- Supports dynamic reallocation of resources across technology readiness levels

Supports transition from project funding to strategic industrial policy

- Ensures legal stability for industrialisation, certification, and standardisation
- Positions the EU to lead in global quantum governance and competitiveness

FROM STRATEGY

Provides legal + financial backbone

Covers governance, investment, IP infrastructure

Enables coordination, monitoring, and life-cycle support

Aligns EU, MS, industry under shared vision

European Quantum Technologies Conference

a Quantum Flagship event

